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Abstract 

Introduction: Endothelial damage and thrombosis caused by COVID-19 may imperil 

cardiovascular health. More than a year since the WHO declared COVID-19 pandemic, 

information on its effects beyond the acute phase is lacking. We investigate endothelial 

dysfunction, coagulation and inflammation, 3 months post-COVID-19.  

Materials and Methods: A cohort study was conducted including 203 patients with prior 

COVID-19. Macrovascular dysfunction was assessed by measuring the carotid artery 

diameter in response to hand immersion in ice-water. A historic cohort of 312 subjects 

served as controls. Propensity score matching corrected for baseline differences. Plasma 

concentrations of endothelin-1 were measured in patients post-COVID-19, during the acute 

phase, and in matched controls. Coagulation enzyme:inhibitor complexes and inflammatory 

cytokines were studied. 

Results and conclusions: The prevalence of macrovascular dysfunction did not differ between 

the COVID-19 (18.6%) and the historic cohort (22.5%, RD -4%, 95%CI: -15–7, p=0.49). 

Endothelin-1 levels were significantly higher in acute COVID-19 (1.67±0.64 pg/mL) as 

compared to controls (1.24±0.37, p<0.001), and further elevated 3 months post-COVID-19 

(2.74±1.81, p<0.001). Thrombin:antithrombin(AT) was high in 48.3%. Markers of contact 

activation were increased in 16-30%. FVIIa:AT (35%) and Von Willebrand Factor:antigen 

(80.8%) were elevated. Inflammatory cytokine levels were high in a majority: interleukin(IL)-

18 (73.9%), IL-6 (47.7%), and IL-1ra (48.9%). At 3 months after acute COVID-19 there was no 

indication of macrovascular dysfunction; there was evidence, however, of sustained 

endothelial cell involvement, coagulation activity and inflammation. Our data highlight the 

importance of further studies on SARS-CoV-2 related vascular inflammation and thrombosis, 

as well as longer follow-up in recovered patients. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

3 
 

Key words: SARS-CoV-2; COVID-19; endothelial cells; blood coagulation; inflammation 

 

Abbreviations 

α1AT = alpha 1 antitrypsin 

C1inh = C1 esterase inhibitor 

CAR = Carotid Artery Reactivity 

CI = Confidence Interval 

COVID-19 = Coronavirus Disease 2019 

ELISA = Enzyme-Linked Immunosorbent Assay 

ET-1 = Endothelin-1 

F = Factor 

IL = Interleukin 

NLRP3 = Nod-like receptor family pyrin domain containing 3 

PCR = Polymerase Chain Reaction 

PKa = Kallikrein 

PSM = Propensity Score Matching 

RD = Risk Difference 

SARS-CoV-2 = Severe Acute Respiratory Syndrome Coronavirus 2 

SD = Standard Deviation 

SMD = Standardized Mean Differences 

TAT = Thrombin:Antithrombin 

VWF:Ag = Von Willebrand Factor:Antigen 

WHO = World Health Organization 
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Introduction 

Coronavirus disease 2019 (COVID-19) results from infection with severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), preferentially affecting the upper airways and 

pulmonary system.1 Depending on the severity of infection, dissemination towards multiple 

other organs occurs and systemic COVID-19 is associated with a high incidence of 

thromboembolic complications and risk of multi-organ failure.2-4 Endothelial vascular injury 

and thrombo-inflammation are emerging key factors in COVID-19 pathophysiology.5-8 

Pronounced endothelial cell damage was found in COVID-19 autopsy studies5, and markers 

of endothelial cell activation are significantly increased in severe COVID-199 and associated 

with organ damage, including liver, heart and brain10. This endothelial cell activation and 

dysfunction may be aggravated by the interplay of thrombo-inflammatory mediators and 

cells, including neutrophils that trigger contact and complement activation, perturbing the 

barrier function and contributing to thrombosis and cardiovascular disease.11 

Severe COVID-19 occurs more often in subjects with established cardiovascular disease or in 

those with cardiovascular risk factors.4,12 Notably, all factors associated with worse disease 

outcome, such as cardiovascular disease, higher age, obesity, hypertension and diabetes, 

also predispose to endothelial dysfunction.13-17 In different cohorts of cardiovascular patients 

without COVID-19, the presence of endothelial dysfunction is strongly related to the 

occurrence of cardiovascular events, including stroke, myocardial infarction and limb 

events.18-20  

Although it has been more than a year since the WHO declared COVID-19 a global pandemic, 

there is a paucity of information related to the effects of COVID-19 on the cardiovascular 

system beyond the acute phase.21 Moreover, the SARS-Cov-2 pandemic represents a 

tremendous health problem including the frequent occurrence of often unexplained 
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prolonged complaints and morbidity long after the acute infection (so-called “long 

COVID”22). We hypothesize that sustained inflammation, coagulation activation and 

endothelial cell activation may ultimately lead to macrovascular dysfunction with an 

increased risk for developing cardiovascular complications later on.11 

Therefore, we firstly investigated whether macrovascular dysfunction could be observed 3 

months after recovery from acute COVID-19. Furthermore, we determined whether signs of 

endothelial cell activation9,23-25, coagulation system activation26, and circulating 

inflammatory cytokines9,27-28, as observed during the acute phase, are present 3 months 

after recovery from acute COVID-19 symptoms. 

 

Materials and Methods 

Study design 

COVAS was a cross-sectional observational cohort study, initiated at Radboudumc 

(Nijmegen, the Netherlands) and conducted at Bernhoven hospital (Uden, the Netherlands). 

The study was approved by the regional ethics committee Arnhem-Nijmegen (reference 

number NL74101.091.20), and local approval has been obtained of the local directory 

boards. This study was conducted in accordance with the latest revision of the Declaration of 

Helsinki. Data available on request from the authors. 

 

Participants 

Patients who had experienced SARS-CoV-2 infection, confirmed by polymerase chain 

reaction on nasopharyngeal swab, sputum or bronchoalveolar lavage, were recruited. 

Patients had to be aged 16 years or older and recovered from acute COVID-19 symptoms for 

at least 6 and no more than 20 weeks. Exclusion criteria were recent (<3 months) episode of 
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angina pectoris, myocardial infarction, stroke or heart failure, and abnormalities of the 

upper extremities restricting cold pressor testing. Abnormalities of the upper extremities 

included severe bilateral Raynaud syndrome, scleroderma, complex regional pain syndrome, 

or presence of arteriovenous fistula or open wounds. Written informed consent was 

obtained from all participants. 

 

Procedures 

Data about cardiovascular risk factors, comorbidities, medication use, and severity of acute 

COVID-19 infection were retrieved from electronic patient files. Case report forms were used 

to obtain information about lifestyle and COVID-19 symptoms. 

 

Measurement of macrovascular dysfunction: carotid artery reactivity test 

Eligible patients visited the hospital once. During the visit, the carotid artery reactivity (CAR) 

test29-31 was performed. The CAR test is a simple, non-invasive procedure to examine 

macrovascular function by measuring the carotid artery diameter in reaction to a cold 

pressor test (sympathetic stimulus).29-31 Participants rest in the supine position with the neck 

extended. The left carotid artery is visualized using L12-4 MHz linear array probe of Philips 

Lumify, ultrasound device. The carotid artery diameter is measured with custom-designed 

edge-detection and wall-tracking software during baseline (30 seconds) and during hand-

immersion in icy water of 4°C (sympathetic stimulus) for 3 minutes.  

A historic control cohort was created from all studies initiated by Radboudumc that 

completed data collection before November 2019, i.e. before the pandemic and therefore 

not affected by COVID-19. In these studies, the CAR test had been used to determine 

macrovascular function and data on risk factors for endothelial dysfunction were collected. 
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Prespecified risk factors for endothelial dysfunction were age13, sex32, body mass index 

(BMI)14, smoking status33, atherosclerotic cardiovascular disease15, hypertension16, 

hyperlipidaemia34 and diabetes mellitus17. Subjects were either healthy volunteers, patients 

with cardiovascular risk factors or patients with symptomatic cardiovascular disease. 

Incomplete case files were excluded from final analyses. Propensity score matching was used 

to select individuals, based on baseline characteristics and cardiovascular risk profile, to 

match those with COVID-19. 

 

Measurement of endothelin-1, coagulation and inflammatory cytokines: 

Whole blood of recovered COVID-19 patients was collected by venipuncture in Lithium-

Heparin (Vacuette) tubes. Platelet poor plasma was prepared by centrifuging whole blood at 

2500g for 10 min followed by a second centrifugation step at 2500g for 20 min, both at room 

temperature. Subsequently, platelet poor plasma was snap frozen and stored at -80°C until 

use. Plasma concentrations of endothelin-1 (ET-1), interleukin (IL)-18, IL-6, and IL-1ra were 

quantified using commercial ELISA kits (R&D, Minneapolis, Minnesota. Catalogue numbers 

DET100, DL180, D6050 and DRA00B, respectively). Activated coagulation factors in complex 

with their natural inhibitors, including thrombin:antithrombin (TAT), factor(F)IXa:AT, 

FVIIa:AT, FXIa:AT, FXIa:alpha-1-antitrypsin (1AT), FXIa:C1-esterase-inhibitor (C1inh) and 

kallikrein:C1inh (PKa:C1Inh), as well as von Willebrand factor antigen (VWF:Ag) levels, were 

quantified by in-house developed enzyme-linked immunosorbent assay (ELISA) methods as 

described previously35. The use of lithium-heparin plasma for the mentioned biomarkers was 

validated by comparing citrate with lithium-heparin plasma from 38 healthy volunteers. ET-1 

was also measured in samples of patients who consented with blood plasma preservation 

during the acute phase of COVID-19 (subjects of the ongoing BioMarCo-19 study, (M de 
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Groot, unpublished data, 2021, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-

001325-31/NL) and in a matched control group of patients without a history of COVID-19 

infection. Plasma concentrations below the lower detection limit were set on the lowest 

detectable value. 

 

Endpoints 

The primary endpoint was the prevalence of macrovascular dysfunction, defined as a 

constrictive response to the CAR test in the COVAS cohort compared to the historic control 

cohort.29 The CAR response was either a dilatory or a constrictive reaction, dichotomized by 

an area under the curve of at least zero or below zero, respectively. The secondary endpoint 

was the plasma concentration of ET-1 in the COVAS cohort compared to the acute phase and  

matched controls. 

 

Statistical analysis 

This study was designed to detect a 2.5-fold excess risk of macrovascular dysfunction in the 

COVAS cohort compared to the matched historic control cohort. With a power of 0.8 and an 

alpha of 5%, 97 patients with COVID-19 infection were required. Assuming an acceptable 

match rate of 50%, the final sample size was set on 200 participants.  

For the CAR test, propensity score matching (PSM) was applied to correct for systematic 

differences in baseline characteristics that could influence endothelial function (i.e. age, sex, 

BMI, smoking status, atherosclerotic cardiovascular disease, hypertension, hyperlipidemia 

and diabetes) between post-COVID-19 patients and historic controls. The propensity score is 

defined as the chance to be in the COVAS cohort, based on baseline characteristics. 

Propensity score was estimated using logistic regression analysis with the group (COVAS or 
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historic control) as dependent variable in relation to baseline characteristics. The balance in 

covariates was evaluated using standardized mean differences (SMD), where a SMD of 0.1 

indicates a negligible correlation.36 After PSM, univariable logistic regression analysis was 

performed to estimate the difference in CAR response and value between the historic 

control cohort and the COVAS cohort. 

ET-1 levels of the COVAS cohort were compared to matched controls using the Mann-

Whitney U test. Sub-analyses were performed on patients with preserved blood plasma 

during the acute phase of infection to compare ET-1 concentrations of the acute phase with 

ET-1 concentrations post-COVID-19.  

Blood plasma markers of coagulation activation and inflammatory cytokines were presented 

as mean ± standard deviation (SD) and the proportion of patients with concentrations above 

normal range. Normal ranges of in-house developed ELISA methods were defined as above 

normal mean + 1 SD (based on previous validation studies35). The Mann-Whitney U test was 

used to compare post-COVID-19 values of patients that stayed home during the acute phase 

of infection to patients that needed hospitalization.  

Correlations between endothelial dysfunction, markers of coagulation and inflammatory 

cytokines were explored using Spearman's rank correlation coefficient.  

Analyses were performed using R 4.0.3 and IBM SPSS Statistics 25. P values below 0.05 were 

considered significant.  
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Figure 1: Flow-chart showing the  composition of the post-COVID-19 cohort and the historic 

control cohort 

Single column fitting image. 

 

Results 

Post-COVID-19 patients: In total, 787 patients were diagnosed with COVID-19 between 

February 1st and June 1st 2020 within the Bernhoven hospital, of which 571 patients 

survived (72.5%). Ultimately, 203 eligible patients gave written informed consent. 

 

Historic controls: For the control cohort, 330 participants of 5 different studies underwent 

the CAR test before November 2019 and were previously assessed for the prespecified risk 

factors for endothelial dysfunction. Complete case files were obtained of 312 participants 

(Figure 1). 
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Table 1: Baseline characteristics and COVID-19 infection course of patients included in the 

COVAS cohort and of all patients that were diagnosed with COVID-19 between February 1st 

and June 1st 2020 within the Bernhoven hospital 

 COVAS selection  
(n=203) 

COVID-19 cohort (n=787) 

All (n=787) Non-survivors  
(n=217) 

Survivors  
(n=570) 

P
at

ie
n

t 

ch
ar

ac
te

ri
st

ic
s Age, mean (SD) 62.7 (12.4) 70.0 (14.2) 78.4 (8.8) 66.8 (14.5) 

Male sex, No (%) 129 (63.5) 470 (59.7) 148 (68.2) 322 (56.5) 

BMI, mean (SD) 28.3 (4.3) 28.52 (5.2) 28.35 (5.0) 28.58 (5.2) 

History of smoking, No (%) 137 (67.5) 371 (56.3) 86 (53.8) 285 (57.1) 

  Missing 128   Missing 57   Missing 71 

o
m

o
rb

id
it

ie
s 

 

Missing  12 (1.5) 7 (3.2) 5 (0.9) 

Hypertension, No (%) 88 (43.3) 377 (48.6) 121 (57.6) 256 (45.3) 

Hyperlipidaemia, No (%) 54 (26.6) 149 (19.2) 44 (21.0) 105 (18.6) 

Coronary artery disease, No (%) 36 (17.7) 147 (19.0) 55 (26.2) 92 (16.3) 

Stroke/TIA, No (%) 23 (11.3) 111 (14.3) 43 (20.5) 68 (12.0) 

Peripheral arterial disease, No (%) 6 (3.0) 70 (9.0) 33 (15.7) 37 (6.5) 

Diabetes Mellitus, No (%) 32 (15.8) 183 (23.6) 58 (27.6) 125 (22.1) 

D
is

ea
se

 s
ev

e
ri

ty
 Days of illness, median [range] 18 [1-80]    

Hospital care (n=121) 130 (64.0) 516 (65.6) 176 (81.1) 340 (59.6) 

  Days, median [range]   7 [1-61]   11 (0-103)   8 (0-60)   12 (0-103) 

Intensive care (n=27) 28 (13.8) 117 (14.9) 41 (18.9) 76 (13.4) 

  Days, median [range]   16 [1-42]   19 (0-82)   15 (0-56)   21 (1-82) 

Days recovered, median [range] 114 [50-157]    

SD = standard deviation, TIA = transient ischemic attack. 

 

Patient characteristics and infection course 

The mean age at COVID-19 diagnosis was 62.7 years and 63.5% of the patients were male 

(Table 1). The most common comorbidities were hypertension (43.3%), hyperlipidemia 

(26.6%) and coronary artery disease (17.7%). Thrombocytopenia (<150*10^9/l) was present 

in 16.6% of the patients. Four patients had asymptomatic disease and were diagnosed with 

COVID-19 during a visit to the emergency ward for other medical reasons. For patients with 

symptomatic COVID-19, the median duration of COVID-19 related symptoms was 18 days 

(range 1-80 days). Fatigue, dyspnea and fever above 39 degrees were the most frequently 

experienced symptoms, 94.1%, 77.3% and 70.9%, respectively. Hospitalization was needed 
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for 130 (64.0%) patients and 28 (21.5%) of these patients were transferred to the intensive 

care unit.  

 

 

Figure 2: Carotid artery reactivity response, based on propensity score matching of 

covariates in the historic control cohort and the COVAS cohort. 

SMD = standard mean difference, SD = standard deviation, HSM = history of smoking, HT = 

hypertension, HL = hyperlipidaemia, CAD = coronary artery disease, TIA = transient ischaemic 

attack, DM = diabetes mellitus, RD = risk difference, 95%CI = 95% confidence interval.  

* Rutherford stage I-III. † Rutherford stage IV-VI. 

2- column fitting image. 

 

Recovery from COVID-19 infection does not result in macrovascular dysfunction 

The prevalence of the prespecified risk factors for endothelial dysfunction in the historic 

control cohort and the COVAS cohort are shown in Figure 2. Besides age, history of smoking 

and history of stroke, all risk factors substantially differed between the historic control 

cohort and the COVAS cohort, with the most noticeable differences seen in the rate of male 

participants (42.9% vs 62.6%), the prevalence of hyperlipidemia (49.0% vs 27.3%) and the 
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prevalence of peripheral arterial disease (58.7% vs 2.7%). Macrovascular dysfunction, as 

measured by carotid artery reactivity testing, was more prevalent in the historic control 

cohort compared to the COVAS cohort, 32.7% vs 16.6% (RD -16.1%, 95%CI: -23.4 to -8.5, 

p<0.001). PSM was used to account for differences between the historic control cohort and 

the COVAS cohort and resulted in a mean SMD below 0.1 for most variables and below 0.15 

for all variables. After PSM, the prevalence of macrovascular dysfunction was not different 

between the cohorts, 22.5% vs 18.6% (RD -4%, 95%CI: -15 to 7, p=0.49), respectively (Figure 

2).  

 

Figure 3: Elevated levels of endothelin-1 during the acute phase of COVID-19 and further 

elevated in recovered patients (n = 36) when compared to controls (n = 56); Mann-Whitney 

U test. 

 

Single column fitting image. 

 

Elevated levels of endothelin-1 during the acute phase of COVID-19 and even higher levels in 

recovered patients 
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Concentrations of ET-1 were significantly higher in the COVAS cohort as compared to 

matched controls (2.52 ± 1.50 vs 1.24 ± 0.37 pg/mL, p<0.001. A selection of 36 patients had 

consented with blood plasma preservation during the acute phase of COVID-19. Levels of ET-

1 of those 36 patients were significantly higher during acute phase COVID-19 (1.67 ± 0.64 

pg/mL) as compared to controls (1.24 ± 0.37 pg/mL, p<0.001), and were further elevated 3 

months post-COVID-19 (2.74±1.81 pg/mL, p<0.001, Figure 3). 

 

Table 2: Sustained inflammation, coagulation activation and elevated endothelin-1 levels 

 Normal range All (n=203) Home (n=73) Hospital (n=130) Home vs 
hospital 

Mean±SD High, % Mean±SD High, % Mean±SD High, % MWU 

Markers of endothelial dysfunction 

CAR 
(n=187) 

≥0% 3.5 ± 4.8 16.6 3.8 ± 5.2 19.4 3.4 ± 5.3 15.0 p=0.334 

ET-1 
(n=203) 

0.87-1.61 pg/mL* 2.52 ± 1.50 64.5 2.25 ± 1.17 61.6 2.67 ± 1.64 66.2 p=0.171 

Coagulation factor:inhibitor complexes (n=203) 

TAT ≤ 4.0 ug/L 4.8 ± 4.0 48.3 6.0 ± 6.2 63.0 4.2 ± 1.5 40.0 p=0.002 
FXIa:AT 7.0-12.5 pg/mL* 25.0 ± 85.5 16.3 20.4 ± 57.3 16.4 27.6 ± 98.0 16.2 p=0.983 
FXIa:α1AT 78.6-120.1 pg/mL* 206.6 ± 698.0 20.7 210.8 ±855.6 19.2 204.3 ± 595.3 21.5 p=0.768 
FXIa:C1inh 176.7-396.7 pg/mL* 633.0 ± 2102.5 17.7 516.1 ± 1664.1 20.5 698.7 ± 2316.1 16.2 p=0.773 
FIXa:AT 187.3-265.9 pg/mL* 259.1 ± 87.9 29.6 270.8 ± 126.3 34.2 252.5 ± 55.4 26.9 p=0.745 
FVIIa:AT 237.7-374.6 pg/mL* 463.7 ± 743.1 35.0 519.2 ± 1157.6 37.0 432.6 ± 337.8 33.8 p=0.999 
Pka:C1inh 1.2-2.2 ng/mL* 17.7 ± 93.1 16.3 19.7 ± 98.7 17.8 16.6 ± 90.2 15.4 p=0.994 

VWF:Ag ≤160% 267 ± 133 80.8 289 ± 151 78.1 254 ± 120 82.3 p=0.097 

Inflammatory cytokines (n=176) 

IL-18 37-215 pg/mL 306.5 ± 128.2 73.9 281.7 ± 124.4 66.1 319.9 ± 128.7 78.1 p=0.026 

IL-6 ≤ 1.8 pg/mL 3.1 ± 7.7 47.7 3.7 ± 12.6 41.9 2.8 ± 2.7 50.9 p=0.033 
IL-1ra 100-400 pg/mL 491.3 ± 364.3 48.9 489.8 ± 475.5 48.8 492.1 ± 288.9 49.1 p=0.194 

SD = standard deviation, MWU = Mann-Whitney U test 

* normal mean±SD 

 

Markers of coagulation and inflammatory cytokines are elevated in recovered COVID-19 

patients 
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In vivo coagulation activity was measured in the post-COVID-19 cohort and increased 

coagulation activity was observed in patients 6-20 weeks after recovery of acute COVID-19 

(Table 2). TAT and FIXa:AT complexes, reflecting a prothrombotic state, were elevated in 

48.3% and 29.6% of the patients, respectively. FVIIa:AT, a marker of the extrinsic pathway, 

was increased in a third of the patients (35%), while markers of contact activation were 

elevated in a minority of the patients (PKa:C1inh (16.3%), FXIa:AT (16.3%), FXIa:1AT 

(20.7%), and FXIa:C1inh (17.7%)). VWF:Ag was predominantly elevated in 80.8% of the post-

COVID-19 patients. Inflammatory cytokine levels were determined. IL-18 levels were high in 

a majority of patients (73.9%), but IL-6 and IL-1ra were also frequently elevated (47.7% vs 

48.9%, respectively).  

 

Figure 4: Correlation heatmap showing rho correlations between factors involved with 

endothelial dysfunction, inflammation and coagulation. Cell colors indicate Spearman's rank 

correlations from blue (negative) to red (positive), where only p values lower than 0.05 are 

colored. Elevated levels of endothelin-1 during the acute phase of COVID-19 and even higher 

levels in recovered patients 
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1.5- column fitting image. 

 

Poor correlations between coagulation and inflammation markers in patients recovered from 

COVID-19 infection 

A heatmap of correlations between markers of endothelial dysfunction, markers of 

coagulation and inflammatory cytokines is presented in Figure 4. Macrovascular dysfunction 

as represented by a negative CAR, was correlated with lower levels of VWF:Ag (correlation 

coefficient (r) = 0.172, 95%CI 0.034 – 0.303, p=0.019), and higher levels of IL-1ra (r = -0.150, 

95%CI -0.283 – -0.012, p=0.047). An association exists between ET-1 and contact activation 

markers FXIa:AT (r = 0.155, 95%CI 0.017 – 0.287, p=0.027) and FXIa:1AT (r = 0.163, 95%CI 

0.025 – 0.295, p=0.020). 
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Strong correlations exist between the coagulation enzyme:inhibitor complexes themselves, 

especially the complexes related to the contact pathway (FXIa:AT, FXIa:1AT, FXIa:C1inh, 

PKa:C1inh). Markers of a prothrombotic state (TAT and FIXa:AT), as well as FVIIa:AT, show 

moderate correlations between themselves and with the complexes related to the contact 

pathway. Moderate correlations were established between the inflammatory cytokines. 

There was a negative correlation between T:AT and Il-18 (correlation coefficient (r) = -0.204, 

95%CI -0.334 – -0.067, p=0.006), but not between any of the other coagulation markers and 

inflammatory cytokines.  

 

Discussion 

This study is, to our best knowledge, the first to investigate macrovascular dysfunction, 

coagulation activation and vascular inflammation in patients that have recovered from 

previous COVID-19 infection. Our data demonstrate that, 3 months after COVID-19 infection, 

patients manifest with sustained inflammation, coagulation activation and elevated 

endothelin-1 levels. These changes, however, do not coincide with macrovascular 

dysfunction. Whilst previous studies on the effects of COVID-19 on the cardiovascular 

system mainly focused on the immediate (i.e. days following infection) cardiovascular 

complications3,37-38, our data are amongst the first to reveal potentially detrimental lasting 

effects beyond the acute phase. In line with our findings, Fien et al reported sustained 

prothrombotic changes based on enhanced thrombin-generating capacity and decreased 

plasma fibrinolytic potential in 52 patients with a resolved COVID-19 infection, 4 months 

after hospital discharge.39 However few groups have endeavored to study sustained 

elevations in inflammation following recovery from acute COVID infection. 
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Acute COVID-19 is associated with a remarkably high incidence of thrombotic complications, 

which can be explained by the unique and complex interplay between SARS-CoV-2, 

pneumocytes, endothelial cells, the local and systemic inflammatory response, and the 

coagulation system. Although clinical recovery is paralleled by normalization of C-reactive 

protein (CRP) and D-dimer levels, we demonstrate that 3 months after acute COVID-19, low 

grade activation of coagulation, inflammation and signs of endothelial dysfunction are still 

present. COVID-19 infection is strongly associated with thrombus formation, both in venous 

and arterial vasculature3,37-38, and coagulation factors in COVID-19-associated coagulopathy 

show a strong correlation with disease severity40. Different mechanisms have been 

proposed, including neutrophil and complement activation, vascular damage, and tissue 

factor expression. Recently, our group demonstrated that neutrophils and contact activation 

of coagulation are potential drivers of COVID-19.23 Both the intrinsic and extrinsic pathways 

of coagulation, do not only amplify fibrin generation, but also link to inflammation. Protease 

Activated Receptor (PAR) 1 is a high-affinity thrombin receptor which is highly expressed on 

platelets as well as on endothelial cells.41 Thrombin-induced endothelial PAR1 activation, 

leads to regulation of vascular tone, permeability, and signals for endothelial adhesion 

molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-

selectin).42-43 FXa is an important agonist for PAR2 receptors, which is present on monocytes, 

macrophages and Kupffer cells.44 Through PAR2 activation, FXa contributes to the 

production of inflammatory cytokines.45 Therefore, activation of the coagulation system 

could lead to inflammation mediated through PAR-receptor activation on endothelial and 

immune cells. 

The COVAS cohort showed indicators of a prothrombotic state, as demonstrated by elevated 

TAT, in half of the patients, and signs of continued inflammation in the majority of the 
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patients, approximately 3 months after resolution of acute COVID-19 symptoms. Acute 

COVID-19 infection is associated with an exaggerated inflammatory response, where cases 

of deadly cytokine storm are common in severe infections, often leading to multiorgan 

failure and death. In the acute state, levels of IL-1 family of cytokines and IL-6 have been 

reported to be elevated.9,24-25 Interestingly, we found that IL-18 levels remained elevated in 

the vast majority of recovered patients, with IL-6 and IL-1ra also remaining elevated in half 

of the individuals. Heightened IL-18 and IL-6 levels are seen in states of vascular 

inflammation and have been associated with worse outcome in cardiovascular disease.46-47 

Our data, therefore, suggest that there may be a state of chronic low-grade inflammation in 

the arteries of acute COVID-19 survivors. The activation and secretion of the IL-1 family of 

cytokines is mediated through the formation and activity of the Nod-like receptor family 

pyrin domain containing 3 (NLRP3) inflammasome, which is similarly enhanced in states of 

chronic inflammation.45,48 Elevated TAT is also associated with worse outcome for coronary 

artery disease48, suggesting a link with vascular inflammation as well. 

Widespread endothelial involvement in acute COVID-19 and in COVID-19-associated 

coagulopathy has been extensively suggested.11,49 Varga et al27 and Rovas et al28 provided 

evidence that COVID-19 could directly infect the endothelial cell and cause severe 

alterations of the microcirculation, accumulation of inflammatory cells and diffuse 

endothelial inflammation in patients suffering from COVID-19. Decreased endothelium-

dependent vasodilator responses and increased serum cytokines and chemokines involved in 

the regulation of vascular function, indicating endothelial dysfunction, were found in 

hospitalized patients with COVID-19.50 We add the novel insight that, also 3 months 

following COVID-19 infection, markers of endothelial activation remained elevated in the 

greater share of recovered patients. This persisting endothelial activation could reflect 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

20 
 

disruption of vascular integrity which may lead to the sustained exposure of the 

thrombogenic basement membrane and the activation of the intrinsic coagulation pathway. 

This contact pathway could contribute to PAR2 activation44, and lead to the secretion of IL-1 

family cytokines by monocytes45, and eventually to vascular inflammation with 

macrovascular dysfunction, subsequently contributing to accelerating cardiovascular disease 

progression46-47. 

The proposed causes of the global health care problem termed ‘long COVID’, are thought to 

derive from virus-specific pathophysiological changes, inflammatory damage, and sequelae 

of critical illnesses (i.e. microvascular damage, immobility and metabolic alterations).22 Our 

data suggest not only an indication of chronic inflammation, but also potential microvascular 

damage, reflected by persistent endothelial activation, in the majority of acute COVID-19 

survivors (table 2). Remarkably, endothelial activation was present to a similar degree in 

patients that experienced critical illness and patients that remained at home during the 

acute phase of infection. An important question remains whether the observed sustained 

inflammation and endothelial activation relate to long COVID complaints and morbidity. 

Macrovascular dysfunction, represented by carotid artery vasoconstriction upon 

sympathetic stimulation, was successfully determined in 187 patients of the COVAS cohort 

and in 330 historic controls. To correct for systematic differences in known risk factors for 

macrovascular dysfunction, propensity score matching was used. Although a perfect balance 

could not be achieved for three of the variables (BMI, history of smoking and 

hyperlipidemia), most SMDs could be reduced to below 0.1 and all SMDs were below 0.15, 

indicating minimal difference in baseline characteristics after correction. After PSM, the 

COVAS study found no signs of COVID-19-induced macrovascular dysfunction 6-20 weeks 

after recovery of acute COVID-19. Our study, therefore, suggests that macrovascular 
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dysfunction is not yet present 3 months following COVID-19. As changes of the larger 

arteries may not occur within 3 months, a longer follow-up may be required to detect 

COVID-19-induced macrovascular dysfunction. It has been demonstrated previously that an 

elevated risk of cardiovascular disease persists during 10 years following hospitalization for 

pneumonia.51 

 

Figure 5:  

Reflection on elevated endothelin-1 levels, coagulation activation and sustained 

inflammation, in the medium to long term post-COVID-19. 

NET = Neutrophil Extracellular Traps, ETAR = Endothelin Type A Receptor, ETBR = Endothelin 

Type B Receptor, NO = nitric oxide 

1.5- column fitting image. 

 

Despite explicit elevations in both coagulation enzyme:inhibitor complexes and 

inflammatory cytokines, no correlation was established between the two, suggesting a 

dissociation between thrombotic and inflammatory states in COVID-19, or at some point 

during recovery. An association exists between different contact activation markers and ET-

1, supporting the hypothesis of endothelial cell activation, likely partially mediated through 
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PAR1 stimulation. ET-1, as an indicator of microvascular dysfunction52, was not related to 

macrovascular dysfunction. Since matched controls clearly confirmed a connection between 

high levels of ET-1 and past COVID-19, while macrovascular dysfunction was not present 3 

months post-COVID-19, this is as expected. A moderate positive correlation exists between 

macrovascular dysfunction and IL-1ra, which could be explained by the role of IL-1 family 

cytokines in arterial/vascular inflammation (Figure 5). 

This study investigated endothelial dysfunction, coagulation activation and vascular 

inflammation in patients recovered from COVID-19 infection. The availability of a large 

historic control cohort with known risk factors for macrovascular dysfunction enabled an 

appropriate comparison between patients recovered from acute COVID-19 and patients that 

had unquestionably not experienced COVID-19. CAR measurements may vary over time and 

may depend on the observer, which could unfortunately not be controlled for in the present 

study. Semi-automated edge-detection and wall-tracking software was used to reduce 

observer variation.  

 

Conclusions 

Based on this unique design, we found evidence of sustained endothelial cell activation, 

coagulation activation and inflammation. However, these changes did not coincide with 

macrovascular dysfunction, 3 months after acute COVID-19. Our data highlight the 

importance of further studies on SARS-CoV-2 related coagulation activation and vascular 

inflammation, with longer follow-up periods in recovered patients, with the newly raised 

hypothesis of IL-1 family cytokines, IL-18 in particular, induced arterial inflammation. 

Sustained endothelial activation as reflected by high ET-1 levels could be maintained by 

contact pathway activation, possibly induced through PAR1 stimulation. Future studies 
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should pursue if high ET-1 levels as a marker of microvascular dysfunction play a role in long-

term COVID complications. 
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Highlights: 

- No indication of macrovascular dysfunction 3 months after acute COVID-19 

- Elevated ET-1 levels during acute COVID-19, and further elevated after 3 months 

- Increased coagulation activity & high inflammatory cytokines 3 months post-COVID-

19 
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